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Cretaceous Extinctions: Multiple Causes 
IN THE REVIEW “THE CHICXULUB ASTEROID IMPACT AND MASS EXTINCTION AT THE CRETACEOUS-
Paleogene boundary” (P. Schulte et al., 5 March, p. 1214), the terminal Cretaceous extinctions 

were confi dently attributed to a single event, the environmental consequences of the impact 

of an extraterrestrial body. The list of 41 authors, although suggesting a consensus, conspicu-

ously lacked the names of researchers in the fi elds of terrestrial vertebrates, including dino-

saurs, as well as freshwater vertebrates and invertebrates. Although we the undersigned differ 

over the specifi cs, we have little doubt that an impact played some role in these extinctions. 

Nevertheless, the simplistic extinction scenario presented in the Review has not stood up to 

the countless studies of how vertebrates and 

other terrestrial and marine organisms fared 

at the end of the Cretaceous (1–4). 

Patterns of extinction and survival were 

varied, pointing to multiple causes at this 

time—including impact, marine regression, 

volcanic activity, and changes in global and 

regional climatic patterns (5). It is telling that 

in all other instances of mass extinction in 

the past 600 million years, no signature of an 

extraterrestrial impact has ever been reliably 

detected, despite extensive searches. More-

over, there are many other known instances 

of large impacts in the geologic record, with 

no associated extinctions (6). The general 

importance of impacts to extinction is called into question, as well as the importance of 

the Cretaceous-Paleogene impact as a single cause (7). By contrast, all of the fi ve widely 

accepted mass extinctions occur during or shortly after times of global marine regression (8) 

and at least three occur during intervals of massive volcanism (9).
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Cretaceous Extinctions: 

The Volcanic Hypothesis

IN THEIR REVIEW “THE CHICXULUB ASTER-
oid impact and mass extinction at the 

Cretaceous-Paleogene boundary” (5 March, 

p. 1214), P. Schulte et al. conclude that “the 

Chicxulub impact triggered the mass extinc-

tion.” However, the Review does not give suf-

fi cient and accurate consideration to the vol-

canic hypothesis. The authors claim that for 

Chicxulub, “the extremely rapid injection rate 

of dust and climate-forcing gases would have 

magnifi ed the environmental consequences 

compared with more-prolonged volcanic 

eruptions.” As evidence, they cite our paper 

(1), saying, “the injection of ~100 to 500 Gt 

of sulfur into the atmosphere within minutes 

after the Chicxulub impact contrasts with vol-

canic injection rates of 0.05 to 0.5 Gt of sul-

fur per year during the ~1-million-year-long 

main phase of Deccan flood basalt volca-

nism.” This contains a substantial error and a 

fundamental misrepresentation of our paper. 

Half a Gt per year of sulfur for 1 million years 

amounts to 500,000 Gt of sulfur, which in any 

Deccan plateau basalts. Lava from Deccan 
volcanism formed distinct layering. 
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climate model would lead to a “snowball” 

Earth! In (1), we estimate the total amount of 

SO
2
 released by the traps at about 10,000 Gt, 

less by a factor of 50 than that in Schulte et 

al.’s Review. The Deccan erupted in a small 

number of short, huge pulses, reducing actual 

injection duration to far less than 1 million 

years. We and others (2, 3) have argued that 

two main phases likely lasted a few thousand 

to tens of thousands of years, during which 

individual flows would have reached vol-

umes of 10,000 km3 and released up to 100 

Gt of sulfur in one or a few decades (based on 

analysis of paleomagnetic secular variation). 

Schulte et al. use our study to show that vol-

canism did not lead to the extinction, yet we 

showed that injection of SO
2
 by a single vol-

canic pulse could have had a climatic impact 

similar to Chicxulub. We estimated (1) that 

the largest Deccan pulses emitted up to 100 Gt 

of sulfur at 0.5 Gt per year for a few decades 

to tens of decades, implying a radiative effect 

slightly lower but lasting substantially longer 

than in the impact case. Whereas impact was 

a single event, some 30 volcanic pulses emit-

ted total amounts of SO
2
 not very different 

from Chicxulub. Their sequence would have 

generated a runaway effect not allowed by a 

single impact or volcanic pulse. Evidence of 

an association between extinctions and con-

tinental flood basalts (CFBs) arising from 

eruption has been proposed since at least 

1986 (4–7). Subsequent work has shown that 

all extinction or oceanic anoxia events in the 

past 300 million years are associated with a 

large accumulation of igneous material of 

the same age within uncertainties (8). No 

conclusive impact has been demonstrated at 

any mass extinction boundary other than the 

Cretaceous-Paleogene. The case of the larg-

est CFB (Siberian traps) and mass extinction 

(Permo-Triassic ~250 million years ago) is 

now generally accepted. Without challenging 

the existence or age of the Chicxulub impact, 

we believe that it is increasingly arguable that 

it could not by itself have caused a mass extinc-

tion, but that because it took place demonstra-

bly during Deccan eruptions (9, 10), it con-

tributed signifi cantly to the mass extinction, as 

yet another giant lava fl ow could have, in an 

already very weakened environment.
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Cretaceous Extinctions: 

Evidence Overlooked

IN THEIR REVIEW “THE CHICXULUB ASTEROID 
impact and mass extinction at the Cretaceous-

Paleogene boundary” (5 March, p. 1214), 

P. Schulte et al. analyzed the 30-year-old 

controversy over the cause of the end-Cre-

taceous mass extinction and concluded that 

the original theory of 1980 was right: A large 

asteroid impact on Yucatan was the sole cause 

for this catastrophe. To arrive at this conclu-

sion, the authors used a selective review of 

data and interpretations by proponents of this 

viewpoint. They ignored the vast body of evi-

dence inconsistent with their conclusion—

evidence accumulated by scientists across 

disciplines (paleontology, stratigraphy, sed-

imentology, geochemistry, geophysics, and 

volcanology) that documents a complex 

long-term scenario involving a combination 

of impacts, volcanism, and climate change. 

Here, we point out some of the key evidence 

that Schulte et al. overlooked. 

The underlying basis for Schulte et al.’s 

claim that the Chicxulub impact is the sole 

cause for the Cretaceous-Paleogene (K-Pg) 

mass extinction is the assumption that the irid-

ium (Ir) anomaly at the K-Pg boundary and 

Chicxulub are the same age. There is no evi-

dence to support this assertion. No Ir anomaly 

has ever been identifi ed in association with 

undisputed Chicxulub impact ejecta (impact 

glass spherules), and no impact spherules have 

ever been identifi ed in the Ir-enriched K-Pg 

boundary clay in Mexico or elsewhere (1, 2). 

In rare deep-sea sites where the Ir anomaly is 

just above impact spherules, it is due to con-

densed sedimentation and/or nondeposition. 

A Chicxulub impact–generated tsunami is 

another basic assumption of Schulte et al. to 

account for the impact spherules in late Maas-

trichtian sediments (including a sandstone 

complex) in Mexico and Texas. Multiple lines 

of evidence contradict this assumption and 

demonstrate long-term deposition before the 

K-Pg, including burrowed horizons, multiple 

impact spherule layers separated by limestone, 

and spherule-rich clasts that indicate the origi-

nal deposition predates the K-Pg and excludes 

tsunami deposition (1–4). 

Evidence of the pre–K-Pg age of the 

Chicxulub impact can also be found in sedi-

ments above the sandstone complex in Texas 

and northeastern Mexico and above the 

impact breccia in the Chicxulub crater. Evi-

dence shows that the K-Pg boundary is not 

linked to the sandstone complex and impact 

spherules (1, 2, 4–7).

Evidence that supports the pre–K-Pg age 

of the Chicxulub impact is also found in the 

CORRECTIONS AND CLARIFICATIONS

Reports: “Cryogenian glaciation and the onset of carbon-isotope decoupling” by N. L. Swanson-Hysell et al. (30 April, 
p. 608). A typographical error in the Fig. 2 caption was introduced to the print edition during page proofs. The correct 
fi nal sentence of the Fig. 2 caption is, “An increase in k

w
 and in the relative burial of C as organic matter can result in a 

decrease in CO
2
, as shown for the Mesoproterozoic �Tonian � Cryogenian, without changes in volcanic CO

2
 input.” The 

caption is correct in the HTML version online.

Cover caption: (23 April, p. 397). The cover image showed children studying chemistry, not nuclear physics.

Reports: “Protein kinase C-θ mediates negative feedback on regulatory T cell function” by A. Zanin-Zhorov et al. (16 
April, p. 372). In the fi rst sentence of the second paragraph on p. 372, T

eff
 should have been defi ned as CD4+ CD25–.

Reports: “Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML” by X.-W. Zhang et al. 
(9 April, p. 240). In the legend for Fig. 3C, the local structure models were described incorrectly; Zn-PML-R is blue and 
As-PML-R is orange.

Policy Forum: “China’s road to sustainability” by J. Liu (2 April, p. 50). In the fi rst sentence, China refers to the People’s 
Republic of China. The word “caused” was missing from the sentence “The ‘Great Leap Forward’ movement (1958–1961) 
caused the loss of at least 10% of China’s forests to fuel backyard furnaces for steel production.”

News Focus: “Immunology uncaged” by M. Leslie (26 March, p. 1573). The article incorrectly stated that the Center for 
Human Immunology, Autoimmunity, and Infl ammation was part of the National Heart, Lung, and Blood Institute. It is a 
separate initiative sponsored by several NIH institutes. The article should also have emphasized that the center is conduct-
ing immunological research and is not a technical service facility.

News Focus: “Treatment as prevention” by J. Cohen (5 March, p. 1196). The title on the graphic mistakenly indicated that 
“incidence” dropped. The researchers did not measure “incidence” but did fi nd a drop in the number of HIV infections 
detected.

Reports: “Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic fl ux” by Q. Wang et al. 
(19 February, p. 1004). In Fig. 2B, the inhibitor used to mimic the cobB mutation was NAM (nicotinamide) not NAD+ 
(nicotinamide adenine dinucleotide).
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presence of a spherule layer in late Maastrich-

tian sediments below the sandstone complex 

in northeastern Mexico and Texas (2, 4, 8).

Deccan volcanism is dismissed by Schulte 

et al. as much older and of no consequence 

in the K-Pg mass extinction. Recent Deccan 

volcanism studies show the contrary (9–11). 

These studies link the mass extinction with 

the main phase of Deccan eruptions. 

When this evidence is taken into account, 

it is clear that the massive Chicxulub and 

Deccan database indicates a long-term mul-

ticausal scenario and is inconsistent with the 

model proposed by Schulte et al.
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Response
THE LETTERS BY ARCHIBALD ET AL., KELLER ET 

al., and Courtillot and Fluteau question our 

conclusion that the Cretaceous-Paleogene 

mass extinction was caused by the asteroid 

impact at Chicxulub. All three Letters stress 

that Deccan fl ood basalt volcanism played a 

major role in the extinction. Keller et al. and 

Archibald et al. also mention that climate 

change was a factor, and Archibald et al. 

point to marine regression as well.

We disagree with the hypothesis that vol-

canic activity can explain the extinction. 

First, geographically extensive biotic records 

of marine microfossils and terrestrial pollen 

and spores that reveal the nature of the Creta-

ceous-Paleogene (K-Pg) mass extinction with 

the greatest fi delity do not contain evidence 

of accelerated extinction rates during the last 

400 thousand years of the Cretaceous [our 

Review and (1, 2)] and therefore do not sup-

port the idea that the biosphere was somehow 

destabilized by Deccan volcanism. In fact, 

plant macrofossils record a diversifi cation dur-

ing this time (2). Studies of the last 1.5 million 

years of the Cretaceous from North America, 

Europe, and Asia [e.g., (3, 4)] are compatible 

with a sudden extinction scenario for non-

avian dinosaurs. Moreover, the constancy of 

late Maastrichtian open ocean sedimentation 

(as indicated by climate cycles driven by reg-

ular oscillations in Earth’s orbit) does not 

provide evidence for overall declining pro-

ductivity or instability in marine ecosystems 

preceding the boundary [e.g., (5)]. 

Second, recent studies suggest that 

the emplacement of the Deccan fl ood 

basalts took place during multiple (~30) 

large eruptive pulses, most of which 

predate the K-Pg boundary by several 

hundred thousand years (6). In con-

trast, others have argued that “activ-

ity in the continental fl ood basalt prov-

ince as a whole is likely to have been 

quasi-continuous” (7). Nevertheless, 

it is extremely diffi cult to reconcile the 

protracted Deccan fl ood basalt eruption 

history with a single abrupt mass extinc-

tion horizon exactly at the K-Pg bound-

ary. Although it is well documented that 

the Chicxulub impact event coincided 

precisely with sudden paleontological 

and paleoenvironmental changes and 

the K-Pg mass extinction [our Review 

and (8, 9)], there are no comparable data 

demonstrating that a major pulse of Deccan 

volcanism coincided with the mass extinction. 

Moreover, it remains to be explained why one 

eruptive event would have resulted in mass 

extinction, whereas multiple earlier eruptive 

events of comparable magnitude and duration 

occurring up to 500 thousand years before the 

K-Pg boundary (6) left few global environ-

mental traces [e.g., (1, 2)]. 

Third, rates of sulfur injections are criti-

cally important to discriminating between 

environmental consequences of impact ver-

sus those of volcanism because the residence 

time of sulfur in the atmosphere is short (10). 

Courtillot and Fluteau claim that we mis-

represent their 2009 paper (6). However, the 

paper includes exactly the numbers (reported 

as “0.1 to 1 Gt/a sulfur dioxide”) we stated. 

We did not note their fi nding that the sulfur 

was released “over durations possibly as short 

as 100 years for each single eruptive event” 

(6) because this does not affect our conclu-

sions. Maintaining such a sulfur release for 

100 years would indeed result in a total sulfur 

release of 50 Gt, which is in the order of the 

lowest estimate for Chicxulub impact (see our 

Review). However, sulfur is removed from 

the atmosphere continuously (10) and there-

fore any accumulation in the atmosphere is 

unsupported, contrary to the claim made 

by Courtillot and Fluteau. We also empha-

size that the instantaneous release of 100 to 

500 Gt sulfur is only one consequence of the 

Chicxulub impact, and the K-Pg boundary 

mass extinction is likely the result of a com-

bination of several impact-induced environ-

mental effects (including the release of sul-

fur, soot, dust, and other effects, as noted in 

our Review), whereas the Deccan fl ood basalt 

hypothesis relies exclusively on the injection 

of sulfur dioxide (6).

With regard to Archibald et al.’s and Cour-

tillot and Fluteau’s comments about other 

Phanerozoic mass extinction events that 

co-occurred with the emplacement of fl ood 

basalt provinces, we note that these extinction 

events are commonly associated with oce-

anic anoxia, calcifi cation crises, and strong 

global warming—none of which is observed 

at the K-Pg boundary (2, 10–13). Further-

more, there is an absence of mass extinctions 

during several large fl ood basalt eruptions 

(10, 14). Each mass extinction event should 

be considered relative to the record for that 

event [e.g., (12)], and we stress the unique 

aspects of the K-Pg boundary record. Chic-

xulub is by far the largest known impact event 

in the Phanerozoic, and the projectile hit an 

extraordinarily thick sulfur-rich sedimen-

tary sequence (see our Review). The absence 

of evidence for impact phenomena at other 

mass extinctions, discussed by Archibald et 

al., is irrelevant for our synthesis of the stra-

tigraphy and biotic response to the specifi c 

Chicxulub impact event.

The Chicxulub Crater. A computer-generated 
gravity map image shows the Chicxulub Crater on 
Mexico’s Yucatan Peninsula.
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Our work in no way diminishes the impor-

tance of gaining a better understanding of the 

environmental consequences of massive vol-

canism. We do not doubt that such volcanism 

can signifi cantly perturb the global environ-

ment. However, a robust correlation between 

mass extinction and fl ood basalt volcanism 

as suggested by Courtillot and Fluteau is 

unlikely [see reviews of (10, 14)].

Keller et al. and Archibald et al. men-

tion that climate change contributed to the 

extinction. As outlined in our Review and in 

(1, 2), climate fl uctuations during the latest 

Maastrichtian (minor warming and subse-

quent cooling) and the associated faunal and 

floral consequences are clearly separated 

from the abrupt mass extinction event at the 

K-Pg boundary.

In response to Archibald et al.’s point 

about marine regressions, we note that marine 

mass extinctions may have coincided with 

global sea-level changes [e.g., (15)]. How-

ever, because sea-level changes are numer-

ous (15), this association seems coincidental 

rather than causal (16). Sea-level change also 

fails to explain the disruption of vegetation 

and the faunal change observed in terrestrial 

environments at the K-Pg boundary (1).

We disagree with the comments of Keller 

et al. regarding the association between 

Chicxulub impact ejecta and the K-Pg 

boundary, and we point out that our Review 

addressed all of the issues to which they 

refer. Our Review integrated new data with 

previous work in the peer-reviewed litera-

ture to provide substantial corroborating evi-

dence for a global correlation of the Chicxu-

lub impact with the K-Pg boundary.
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Honing the Test-and-Treat 

HIV Strategy 
IN HIS NEWS FOCUS STORY (“TREATMENT AS 
prevention,” 5 March, p. 1196), J. Cohen 

reviews ideas presented at the 17th Conference 

on Retroviruses and Opportunistic Infections 

about the use of HIV treatment as prevention. 

Enthusiasm for the treatment-as-prevention 

approach has grown in recent years as (i) the 

drugs have become safer, better tolerated, and 

more widely available; (ii) widespread testing 

has become cheaper and more effi cient; (iii) 

earlier therapy has become desirable; and (iv) 

mathematical modeling by some (1) (but by 

no means all) has suggested that a test-and-

treat strategy could control the spread of HIV. 

Cohen cites an observational analysis, 

by Donnell et al., that reported considerable 

reduction of HIV transmission in HIV discor-

dant couples when ART was provided to the 

HIV-infected index partner (2). This fi nding—

similar to work from Sullivan et al. presented 

at Conference on Retroviruses and Opportu-

nistic Infections in 2009 (3)—helps to support 

the key assumption that ART reduces infec-

tiousness. However, these studies report only 

short-term observations; they do not address 

the durability of this effect or the risk of trans-

mitted drug-resistant HIV strains, two critical 

considerations for the test-and-treat strategy.
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